Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the continuously evolving realm of nonlinear optics, epsilon near zero (ENZ) materials have captured significant scientific interest, becoming a compelling focal point over the past decade. During this time, researchers have shown extraordinary demonstrations of nonlinear processes such as unity order index change via intensity dependent refractive index, enhanced second harmonic generation, saturable absorption in ultra-thin films and more recently, frequency shifting via time modulation of permittivity. More recently, remarkable strides have also been made in uncovering the intricacies of ENZ materials' nonlinear optical behavior. This review provides a comprehensive overview of the various types of nonlinearities commonly observed in these systems, with a focus on Drude based homogenous materials. By categorizing the enhancement into intrinsic and extrinsic factors, it provides a framework to compare the nonlinearity of ENZ media with other nonlinear media. The review emphasizes that while ENZ materials may not significantly surpass the nonlinear capabilities of traditional materials, either in terms of fast or slow nonlinearity, they do offer distinct advantages. These advantages encompass an optimal response time, inherent enhancement of slow light effects, and a broadband characteristic, all encapsulated in a thin film that can be purchased off-the shelf. The review further builds upon this framework and not only identifies key properties of transparent conducting oxides that have so far made them ideal test beds for ENZ nonlinearities, but also brings to light alternate material systems, such as perovskite oxides, that could potentially outperform them. We conclude by reviewing the upcoming concepts of time varying physics with ENZ media and outline key points the research community is working toward.more » « less
-
Engheta, Nader; Noginov, Mikhail A.; Zheludev, Nikolay I. (Ed.)
-
To address the challenges of developing a scalable system of an on-chip integrated quantum emitter, we propose to leverage the loss in our hybrid plasmonic-photonic structure to simultaneously achieve Purcell enhancement as well as on-chip maneuvering of nanoscale emitter via optical trapping with guided excitation-emission routes. In this report, we have analyzed the feasibility of the functional goals of our proposed system in the metric of trapping strength (∼8KBT), Purcell factor (>1000∼), and collection efficiency (∼10%). Once realized, the scopes of the proposed device can be advanced to develop a scalable platform for integrated quantum technology.more » « less
-
Plasmonic-based integrated nanophotonic modulators, despite their promising features, have one key limiting factor of large insertion loss (IL), which limits their practical potential. To combat this, we utilize a plasmon-assisted approach through the lens of surface-to-volume ratio to realize a 4-slot based EAM with an extinction ratio (ER) of 2.62 dB/µm and insertion loss (IL) of 0.3 dB/µm operating at ∼1 GHz and a single slot design with ER of 1.4 dB/µm and IL of 0.25 dB/µm operating at ∼20 GHz, achieved by replacing the traditional metal contact with heavily doped indium tin oxide (ITO). Furthermore, our analysis imposes realistic fabrication constraints, and material properties, and illustrates trade-offs in the performance that must be carefully optimized for a given scenario.more » « less
-
Teherani, Ferechteh H.; Look, David C.; Rogers, David J. (Ed.)
-
Subramania, Ganapathi S.; Foteinopoulou, Stavroula (Ed.)Data usage across the internet is growing exponentially, fueled primarily by the move to cloud computing and penetration of streaming services into developing countries. To address the growing energy needs of data centers, we propose an all oxide plasmon assisted electro-optic modulator, which features enhanced light-matter interaction, and compact sizes as seen in plasmonic modulators while at the same time maintaining low insertion losses, as seen in photonic modulators. This is achieved by utilizing a device design that selectively engages and disengages the lossy plasmonic component, as the device switches from low transmission to high transmission modes.more » « less
-
Titanium nitride (TiN) is highly attractive for plasmonics and nanophotonics applications owing to its gold‐like but tunable optical properties. Its prodigious potential for plasmonics has been demonstrated on sapphire or bulk MgO. For a transformational impact, high optical quality TiN on Si is required instead, which would support the integration of nanophotonics with the complementary metal‐oxide‐semiconductor (CMOS) electronics. However, TiN grown on Si, even at elevated temperatures, lacks the optical quality needed, imposed by the large lattice mismatch between them. Here, a novel approach is reported wherein a thin MgO interlayer is inserted between TiN and Si. The improved crystalline quality enabled by MgO for TiN on Si(001) leads to a significant enhancement of the plasmonic figure of merit (FOM = −ε′/ε″) from 2.0 to 2.5 at telecommunication wavelength (peak FOM of 2.8), which is comparable to the widely accepted ultimate FOM obtained on bulk MgO grown under similar conditions. The TiN/MgO/Si structure enables the hybrid‐plasmonic‐photonic waveguide platform with sufficiently low losses, and thus long propagation lengths, for nanophotonic devices while providing additional practical advantages such as serving as a self‐aligned robust etching mask. Thus, the much‐anticipated potential of TiN on Si platform for CMOS compatible plasmonics is brought closer to reality.more » « less
An official website of the United States government
